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Abstiract

We review the development of diffuse-interface models of hydrodynamics and their
application to a wide variety of interfacial phenomena. These models have been ap-
plied successfully to situations in which the physical phenomena of interest have as-
sociated with them a length scale commensurate with the thickness of the interfacial
region, (e.g. near-critical interfacial phenomena or small scale flows such as those occur-
ring near contact lines), and fluid flows involving large interface deformations and/or
topological changes (e.g. breakup and coalescence events associated with fluid jets,
droplets, and large-deformation waves). We discuss the issues involved in formulating
diffuse-interface models for single-component and binary fluids. Recent applications
and computations using these models are discussed in each case. Further, we address
issues including sharp-interface analyses that relate these models to the classical free-
boundary problem, computational approaches to describe interfacial phenomena, and

models of fully-miscible fluids.

*Permanent address: Faculty of Mathematical Studies, University of Southampton, Highfield, Southamp-
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1. INTRODUCTION

The nature of the interface between two fluids has been the subject of extensive investigation
for over two centuries. Young, Laplace and Gauss, in the early part of the 1800’s, considered
the interface between two fluids to be represented as a surface of zero thickness endowed
with physical properties such as surface tension. In these investigations, which were based
on static or mechanical equilibrium arguments, it was assumed that physical quantities,
such as density, viere, in general, discontinuous across the interface. Physical processes such
as capillarity occurring at the interface were represented by boundary conditions imposed
there (e.g. Young’s equation for the equilibrium contact angle or the Young-Laplace equation
relating the jump in pressure across an interface to surface tension times curvature). Poisson
(1831), Maxwell (1876) and Gibbs (1876) recognized that the interface actually represented
a rapid but smooth transition of physical quantities between the bulk fluid values. Gibbs
introduced the notion of a dividing surface (a ‘surface of discontinuity’) and surface excess
quantities in order to develop the equilibrium thermodynamics of interfaces. The idea that
the interface has a non-zero thickness (i.e. it is diffuse) was further developed in detail by
Rayleigh (1892), and van der Waals (1893) who proposed gradient theories for the interface
based on thermodynamic principles. In particular, van der Waals gave a theory of the
interface based on his equation of state and used it to predict the thickness of the interface
which he showed became infinite as the critical temperature is approached. Korteweg (1901)
built on these ideas to propose a constitutive law for the capillary stress tensor in terms of the
density and its spatial gradients. These original ideas have been developed further and refined
over the past century and we turn the reader to the work of Rowlinson (1979) and Rowlinson
and Widom (1989), who provide thorough discussions of the historical perspectives and
complete references to the early work on interfacial and capillary phenomena.

The notion of a diffuse interface and the use of a capillary stress tensor to model the
interface between two fluids and the forces associated with it are of central importance to
the topics under consideration in the present paper. Our focus here is on the use of diffuse-

interface models which fully couple these notions into a hydrodynamic description. Such
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models have been used to understand physical and hydrodynamic phenomena that occur
near a fluid’s critical point. Additionally, developments in modern computing technology
have stimulated a recent risurgence in the use of the diffuse-interface models for the com-
putation of flows associated with complex interface morphologies and topological chianges,
such as droplet breakup and coalescence and the highly nonlinear development of classical
hydrodynamic instabilities.

In the classical fluid mechanical approach, the interface between two immiscible fluids is
modeled as a free boundary which evolves in time. The equations of motion which hold in
each fluia are supplemented by boundary conditions at the free surface which involve the
physical properties of the interface. This formulation results in a free-boundary problem
(Lamb 1932, Batchelor 1967, Lighthill 1978, Drazin & Reid 1981, Davis 1983).

Specifically, in the free-boundary formulation it is assumed that the interface has associ-
ated with it a surface tension, which on applying a stress balance at the interface gives rise

to the interfacial boundary condition

which relates the jump in the stress across the interface to the interfacial curvature. Here
o is the stress tensor, 7 is the unit vector normal to the interface, y is the surface tension
(here assumed to be constant) and K is the appropriately signed curvature. In addition, an
interface between two immiscible fluids is impermeable in which case conservation of mass

across the interface gives that

<y

A=l = Va, (2)

wherc ¥ represents the velocity of the fluid and V, is the normal velocity of the interface.

Finally, for viscous fluids, there is continuity of tangential velocity across the interface
[7— (7 A =0 (3)

The free-boundary description has been a very successful model in a wide range of sit-

uations, however there are also important iustances where it breaks down. In short, as a
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physical model it breaks down when the interfacial thickness is comparable to the length scale
of the phenomena being examined. For example, (i) in a near-critical fluid the thickness of
the interface diverges at the critical point (Stanley 1971) and consequently the representation
of the interface as a boundary of zero thickness may no longer be appropriate, (ii) the motion
of a contact line along a solid surface involves a detailed consideration of the fluid motion in
the vicinity of the contact line, and may require the treatment of length scales comparable to
that of the interface thickness, and (iii) the free-boundary description may not be adequate
for situations involving changes in the topology of the interface (e.g. the breakup of a liquid
droplet), since these processes fundamentally involve physical mechanisms acting on length
scales comparable to the interface thickness. In addition to the above situations, another
difficulty associated with the free-boundary formulation arises in its use in computational
settings when the free boundary shape becomes complicated or self-intersecting.
Diffuse-interface models provide an alternative description in the face of these difficulties.
Quantities which in the free-boundary formulation are localized to the interfacial surface are
recognized to be distributed throughout the interfacial region. For example, surface tension
in the classical model is a representation of a distributed stress within the interfacial region.
In this spirit a continuum theory of the interface may be developed where the reversible part
of the stress tensor, C, that is associated with surface tension is expressed in its simplest

form as
1
C x (pV’p +3 IVPI') I-Vp®Vp, (4)

where p is the fluid density and the components of the outer product Vp® Vp are given by
(8p/8=:)(8p/Bz;). The existence of such a stress tensor, often called the capillary tensor,
was first described by Korteweg (1901). The derivatives of the density that appear in the
stress tensor arise from the non-local interaction of the molecules within the interface. In
this situation, the density p is the variable which distinguishes the bulk fluids and the
intervening interface. In this role, it is known as the order parameter. In contrast, for a
binary fluid undergoing spinodal decomposition, the composition ¢ naturally plays the role

of an order parameter (Cahn & Hilliard 1958). Alternatively it is possible that neither the
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density or the composition may be an appropriate or convenient order parameter; such is
the case in solidification models (e.g. Caginalp 1985, 1986, Langer 1986). Here it is possible
to introduce an alternative order parameter, the so-called phase field ¢, to characterize the
phases. The phase-field assumes distinct constant values in each bulk phase and undergoes
rapid but smooth variation in the interfacial region. The phase field can be regarded as
a mathematical device that allows a reformulation of the free-boundary problem and has
been used successfully in many instances. In particular, phase-field models of solidification
have been used to compute ~omplicated realistic interfacia! structures such as thosc preszit
during dendritic growth (Kobayashi 1993, Wheeler et al 1993, Warren & Boettinger 1995)
and Ostwald ripening (Warren & Murray 1996).

Inherent in diffuse-interface models is an interfacial width which is characterized by the
length scale over which the order parameter changes. By considering the asymptotic limit
in which the interfacial width is small compared to the macroscopic length scale associated
with the motion of the two bulk fluids (i.e. the sharp-interface limit) the diffuse-interface
model can be related to the free-boundary problem.

In Section 2 we formulate the diffuse-interface theory of a single-component fluid near its
critical point. Here we discuss developments for equilibrium and nonequilibrium situations
and also review the applications addressed with this model. In Section 3 we review the
developments of these ideas for a binary fluid. In Section 4 we discuss related topics including
the sharp-interface limit analyses, computational methods for fluid interfaces and models of
miscible fluids.

2. A SINGLE-COMPONENT FLUID

Diffuse-interface models of a single-component fluid have been developed largely from the
perspective of critical phenomena. While they have been used to study phenomena associated
with the critical point, they have also been applied to situations away from the critical
point. With this in mind, we shall review in this section the ideas and applications of

diffuse-interface models of a single-component fluid.

-4
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Equilibrium

We begin by first considering the equilibrium state of a non-uniform single-component fluid.
We assume that an isothermal fluid near its critical point has associated with it the Helmholtz

free energy functional given by

7= [ oo, 1)+ KIVoE] 4V, (5)

where V is a control volume, f(p,T) is the bulk free energy density (per unit mass), K is a
gradient energy coefficient (assumed for simplicity to be constant) and T is the temperature.
In a simple model the term pf'p,T) is assumed to take the form of a double-well with
respect to the density below the critical temperature and a single-well above the critical
temperature. The square-gradient term is associated with variations of the density and
contributes to the free energy excess of the interfacial region, which defines the surface
energy (Cahn & Hilliard 1958). The form of the energy density can be interpreted in the
context of statistical mechanics in which the square gradient term arises from attractive
long-ranged interactions between the molecules of the fluid and in which the gradient energy
coefficient, K, can be related to the pair correlation function, (e.g. see Irving & Kirkwood
1950, Bearman & Kirkwood 1958, Yang et al 1976, Bongiorno et al 1976, Abraham 1979, de
Sobrino & Peternelj 1982 and Davis & Scriven 1982 for further details).

The equilibrium conditions are obtained by minimizing F subject to a constraint of

constant mass, M, where
= dv. 6
M= [ p (6)
This leads to the Euler-Lagrange equation
KVip—(pf)p+Ar=0, (M

where ) is the Lagrange multiplier associated with conservation of mass. We observe that
the integrand of F as well as that of the mass constraint are independent of the spatial

coordinates. Consequently, it follows from Noether’s Theorem (Goldstein 1980) that there

-5-



DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS April 1995

is a corresponding conservation law given by
vV-T=0, (8)

where T is a second-rank tensor given by

ocC
T=LI-Vp® e, 9
P ® 55 (9)

and L = pf(p,T) + 3K |Vp|* — Xp. Using the Euler-Lagrange equation (7) to eliminate the
Lagrange multiplier we find that

1
T = [~p+ KoV + ;KIVol| I - KV, @ Vp, (10)

where p = p®f, has been identified as the thermodynamic pressure, see, e.g., Callen (1985).

Using the divergence theorem, € juation (8) may be expressed as
js'r AdA =0, (11)

where S is the boundary of a control volume with unit normal vector . This is the gen-
eralization to three dimensions of the first integral of the Euler-Lagrange equation (7) in
one dimension. Equations (8) and (11) suggest that T represents a stress tensor (up to an
additive divergence-free contribution). We show in the next section that T represents the
reversible part of the stress tensor. Similar equilibrium conditions have been obtained by
Blinowski (1973a, 1973b) from the point of view of elastic fluids. A review article covering
a variety of aspects of this and related theories can be found in Davis & Scriven (1982). It
was noted by Dunn & Serrin (1985) that consistency with nonequilibrium thermodynamics
requires a more specific form for the capillary tensor than that used originally by Korteweg
(1901) and later in the mechanical equilibrium theories of Aifantis & Serrin (1983a, 1983b).

The equilibrium density profile p(z) obtained using a van der Waals equation of state
(Callen 1985, Rowlinson and Widom 1989) represents a smooth transition from one bulk
density to the other (in the two phase region) over a length scale associated with the gradient

energy coefficient. Such an interface has associated with it a surface energy given by

1:1(/_: (%)zdz. (12)

-6-
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Non-equilibrium

We now pursue the non-equilibrium situation by outlining a thermodynamic procedure in-
volving local balances of mass, linear momentum, energy and entropy consistent with the
inclusion of a square-gradient energy term in the internal energy functional. The total mass,

M, total momentum, 73, total internal energy, £, and total entropy, S associated with a

material volume (t) are

= dv,
M N (13a)
5 = 5dV, b
P oo pvdV, (13b)
£ = [ (3ol +pels,p) + 3KslVol) Vs (13¢)
n(e) \2 ’ 2 ’
= psdV, (13d)

n(t)
where ¥ is the fluid velocity, e and s are the internal energy and entropy per unit mass, and
Kg is the gradient (internal) energy coefficient which we assume to be constant. Here we

have for simplicity neglected body forces such as gravity. The associated physical balance

laws can be expressed as

% -0, (14a)
7 - [ g™ 4 (14b)
% - ‘/Jn(‘)[ﬁ'-m-ﬁ—é‘g-ﬁ]dA, (14c)
% + [sn(')is-ﬁdA= n(‘).a"“’dvzo, (14d)

where §(t) is boundary of Q(t), m is the stress tensor, ¢z and ¢s are the internal energy and
entropy fluxes, resnectively, and §77° is the volumetric entropy production. The quantities
m, §x and gs, which in general include both classical and nonclassical contributions, shall
be specified below such that their forms guarantee that i"°? is non-negative, as required
by the Second Law of Thermodynamics. Equation (14a) simply represents conservation of

mass. Equation (14b) states that the change in total momentum is related to the forces

-1-
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on the boundary (again note that we have neglected body forces). Equation (14c) states
that the change in total energy is related to the rate of working done by the forces on the
boundary and also the energy flux through the boundary. Equation (14d) states that the
change in total entropy plus the entropy flux through the boundary must be equal to the
entropy production. The definitions (13) and balance laws (14) may be manipulated to show
that

g7l = w-» (€E+KEPD-%VP)-V(%) +V- (is—%—%%% p), (15)
where T is the reversible part of the stress tensor given by equation (10) with K replaced by
Kg, and we have used the thermodynamic relationship de = T'ds + (p/p?)dp. The following

specifications ensure that the entropy production is positive

m = T+, (16a)
- Dp

§gg = —kVT - KE—Et_vP’ (16b)
- kVT

s = — (16c)

where k is the thermal conductivity and 7 is the viscous stress tensor given in the standard
manner as T = (V- ¥)+u(Vi+ V7T), where 7 and p are coefficients of viscosity (e.g. Batch-
elor 1967). This prescription for m is similar to that postulated by Korteweg (1901). In
this formulation it is assumed that the viscosity and thermal conductivity are, in general,
functions of the density. We observe that the energy flux gz involves both the classical
contribution corresponding to the Fourier Law for heat conduction (Carslaw & Jaeger 1959,
Kittel & Kroemer 1980) and a nonclassical contribution. This nonclassical contribution was
referred to as ‘interstitial working’ by Dunn & Serrin (1985), who also noted that there is
no corresponding nonclassical term in the entropy flux. When a square-gradient term is in-
cluded in the definition for total entropy (13d), a nonclassical entropy flux arises (e.g. Wang
et al 1993, Wheeler et al 1996, Anderson & McFadden 1996). Using the above forms (16)
for the stress tensor and fluxes the local balance laws may then be written as

Dp

Dt = -pV . 7, (17a)

-8~
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Dv

P = V.-m, (17b)
p%:' = V- (kVT)+(—pI+T): V¥, (17¢)
pT% = V- (kVT)+ 7: V7, (17d)

These equations describe viscous, compressible, nonisothermal flow. In order to solve these
it is necessary to supply an equation of state. In the isothermal situation, for example, one
might specify the pressure p through a van der Waals equation of state.

This and similar models have been developed and studied by a number of authors from
a variety of perspectives. Fixman (1967) developed a diffuse-interface hydrodynamic model
in which the reversible part of the stress tensor was identified using a mechanical principle.
In the model of Felderhof (1970), a more general form of the stress tensor was obtained
which was compatible with the underlying Lagrangian. Langer & Turski (1973) derived
a diffuse-interface model that they showed, through a ‘coarse-graining’ argument, could
be related to a molecular model. The model employed by Jasnow & Vidals (1996) was
derived using a Hamiltonian description. Jacqmin (1996) described a model which also
included a wall potential to model the interaction between the fluid and a solid boundary.
Truskinovsky (1993) derived a similar model which also included an additional non-conserved
order parameter and its gradients. Antanovskii (1996) presented a derivation of the model
based on a maximum entropy principle. The derivation outlined above is most similar to
that described by de Sobrino (1976), Dunn & Serrin (1985), Dunn (1986) and Anderson
& McFadden (1996, 1997). The work of de Sobrino begins in a more general framework
and invokes symmetry and invariance principles to simplify the gradient dependence of the
stress tensor to that which is described above. Dunn & Serrin’s approach is similar, but
mathematically more rigorous and is given from the viewpoirt of rational mechanics.

A detailed numerical analysis of a simplified version of the diffuse-interface model has
been performed by Affouf and Caflisch (1991), who present numerical solutions representing
phase transitions, shocks, and rarefaction waves connecting far-field states and analysge their

stability.
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Applications

CRITICAL POINT SCALING LAWS  Extensive analysis using renormalization-group
techniques have been performed on a diffuse-interface model, comronly known in the liter-
ature as ‘Model H’ (Hohenberg & Halperin 1977), which describes the dynamics of a binary
fluid phase transition as well as a single-component fluid near its critical point (e.g. Halperin
et al 1974, Siggia et al 1976, and Hohenberg & Halperin 1977). Such analyses have identified
diver: *nt transport coefficients and scaling relations associated with near-critical fluids.

SHEAR FLOWS IN NEAR-CRITICAL FLUIDS Onuki & Kawasaki (1979) and Onuki
et al (1981) have studied the dynamics of a near-critical fluid in a shear flow using a model
developed by Kawasaki (1970). They investigated the regime in which the equilibrium cor-
relation length (i.e. the interfacial thickness) exceeds the length scale associated with the
shear flow. Among their findings is that the critical fluctuations of classical fluids can be
drastically altered (e.g. they can become highly anisotropic) by shear flows. These ideas
have also been applied to polymers under shear flows (Helfand & Fredrickson 1989, Onuki
1989).

CAPILLARY WAVES  The diffuse-interface model has been used to study capillary
waves (Felderhof 1970, Turski & Langer 1980, de Sobrino & Peternelj 1985 and de Sobrino
1985). These authors begin with a diffuse planar interface in equilibrium. They discuss
capilic* ; waves by means of a linearized theory about the equilibrium state. The linearized
governing equations are examined in the long wavelength limit and the dispersion relation for
capillary waves obtained from the classical free-boundary problem (e.g. Landau & Lifshitz
1959) is recovered. These authrrs recognized the importance of an isentropic treatment
to the existence of capillary weves (in the context of a diffuse-interface model) although
Felderhof derived the result in the isothermal case as well under somewhat more restrictive
conditions.

MOVING CONTACT LINES  Seppecher (1996) established the governing equations
for an isothermal viscous flow near a moving contact line ¢ a planar solid wall using a

diffuse-interface model. In particular, a uniform distribution of ‘double forces’ was used to

-10-
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describe the interaction between the fluid and the wall. In this analysis, the contact-line
problem was separated into three regions: an external (outer) region far from the contact
line where the classical theory of capillarity applies; an inner region very near the contact line
whose dimensions are so small that the thickness of the interface cannot be neglected; and an
intermediate region which matches the inner and outer regions. The flow in the inner region
is compressible while the flows in the intermediate and outer regions are incompressible.
Examples of the density field and flow field in the inner region are shown in Figs. 1 and 2. A
key result of this paper was that the force singularity present in classical continuum models of
moving contact lines (e.g. Huh & Scriven 1971, Dussan V. & Davis 1974, Dussan V. 1979) is
not present when the interface is modeled as diffuse. This is attributed to mass transfer across
the interfacial region. Additionally, numerical computations reveal a roughly linear increase
in the apparent contact angle with the contact-line velocity (no contact-line hysteresis was
considered), which agrees with the general trends observed experimentally (see Dussan V.
1979). The moving contact-line problem has also recently been treated computationally by
Jacqmin (1996) and is described in the next section.

INTERNAL WAVES IN A NEAR CRITICAL FLUID Anderson & McIadden (1997)
have recently employed the diffuse-interface model to describe internal waves in a near-
critical fluid. These internal waves are present in small (centimeter-scale) containers owing
to the large compressibility of the fluid near the critical point and have been observed
experimentally in near-critical Xenon by Berg et al (1996). In the experimental work of Berg
et al, internal gravity wave frequencies were measured both above the critical temperature
where a single phase exists and below the critical temperature where two phases, separated
by an interface, exist. The theoretical development of Berg et al consisted of two separate
models; one above the critical temperature and another below the critical temperature. In
contrast to these classical hydrodynamic models, the diffuse-interface approach employed by
Anderson & McFadden allows for a single model to be applied both above and below the
critical temperature. In their diffuse-interface model, they use a van der Waals equation

of state to obtain a base-state density profile. Upon this base-state they introduce linear

-11-
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perturbations to calculate internal wave frequencies for temperatures both above and below
the critical temperature. Predictions of the interral wave frequency from the diffuse-interface
model are compared favorably with experimental data and theoretical results of Berg et al.

DROPLETS AND NUCLEATION  Several 7 :thors have investigated the nucleation
of droplets (Blinowski 1974 and Dell’Isola et al 1995, 1996). The focus of this work was to
ascertain the effects of interfacial thickness on the n-  eation conditions of a droplet since, at
nucleation, the droplet radius may be comparable to the interfacial thickness. Under these
circumstances, the classical Laplace—Gibbs theory for the equilibrium radius of a droplet is
called into question. Dell’Isola et al used an equilibrium formulation of a diffuse-interface
model developed in earlier work (Dell’Isola & Kosiiski 1993) to study nucleation of spherical
droplets. In particular, they noted that for microscopic droplets the difference in mechanical
pressures inside and outside the droplet (which is what is measured experimentally) is not
the same as the difference between the thermodynamic pressures inside and outside the
droplet. The mechanical pressure involves a (stress) contribution from the spatial density
variation (e.g. the term in (10) involving pV?p) which at the center of the microscopic bubble
is important. Based on these ideas, they carefully define quantities such as surface tension
and droplet radius in a way which generalize the classical notions. Relationships between
surface tension, droplet radius and the critical nucleation radius are obtained using a number
of different equations of state. Results for the minimal nucleation radius are compared with
experimental measurements.

INSTABILITIES OF PLANAR JETS Nadiga & Zaleski (1996) studied in the instability
of a planar jet of viscous, compressible, isothermal liquid issuing into its surrounding gas
phase. They use a van der Waals equation of state to characterize the system. Their
calculations focus on the high Reynolds number regime (Re = 800) and they investigate the
effect of surface tension on the stabilization of the jet.

SPINODAL DECOMPOSITION IN A PURE FLUID  Nadiga & Zaleski (1996) also
considered the spinodal decomposition of a single-component fluid rapidly quenched from a

temperature above its critical point to a temperature below the critical point. These compu-
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tations are isothermal and two-dimensional. They find that the inclusion of hydrodynamic
effects in the model leads to a predicted growth rate which is slightly enhanced from the case
when the growth is limited by diffusion. Numerical computations show the domain growth

and plots of domain size versus time are presented.

3. A BINARY FLUID

Non-equilibrium

We now consider the situation of a binary fluid which consists of two components A and
B. We denote the composition of component A, expressed as a mass fraction, by c. In this
setting the composition plays the role of an order parameter which distinguishes the different
phases of the fluid and in this way is analogous to the density in the single-component fluid
models. As we shall see shortly, however, there are a number of subtle differences between
the single-component and binary fluid models.

The governing equations for the flow of a nonisothermal, compressible binary fluid may
be developed in a similar manner to those for the single-component case discussed above but
involve square-gradient contributions in the internal energy functional from the coml:;osition

rather than from the density. This procedure gives that the entropy production is

e BT (o) o (3) 5 (3]

T T
v (m B Koo ), o
where T is the reversible part of the stress tensor given by
T, = (——p + %KEIVcP) I- KeVe® Ve, (19)
dc is the mass flux of component A and u. is the generalized chemical potential given by
Pe = g—: - EPEV’C. (20)

The specification of m, §g, §s and §c to ensure positive entropy production follows in

an analogous way to the single-component case. In particular, §c = —DV(u./T), where
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D is positive and represents the diffusion coefficient. Consequently, the equation for the

composition is given by

pg—: -v. {DV [-,} (% - %v’c)] } (21)

This is well-known Cahn-Hilliard equation, used to model spinodal decomposition by Cahn
(1961) and Hilliard (1970), modified to account for fluid motion. The equations governing
density, velocity and temperature (energy) are similar to those for a single-component fluid
given above by equations (17). Two subtle differences between the binary fluid equations
and the single-component fluid equations are worth mentioning. First, the reversible part of
the stress tensor T'c does not contain the counterpart of the Laplacian term appearing in T,
see equation (10). This is because the order parameter c is given per unit mass in contrast
to the density p. Second, the order parameter c is governed by the modified Cahn-Hilliard
equation (21), whereas the density p is governed by the continuity equation (17a).

Details of the derivation of the governing equations for a binary fluid have been dis-
cussed by a number of authors. Blinowski (1975) considered the binary fluid case and also
more general multi-component systems. Starovoitov (1994) derived a birz.y fluid diffuse-
interface model using a virtual power method. Antanovskii (1995) derived the equations for
nonisothermal, viscous, quasi-compressible flow. His derivation was based on a maximum
entropy principle, similar to the approach described here, but used virtual work arguments
to identify the forms of the stress tensor and fluxes. Gurtin et al (1996) derived a model for
an isothermal, incompressible flow using microforce balance laws. Jasnow & Vigals (1996)
illustrated the derivation of the equations for a binary fluid using a Hamiltonian formalism.
Although their derivation was given for an isothermal, inviscid, incompressible fluid, the
model was extended to the case where the fluid was viscous and the temperature field varied
slowly in time. A similar account can be found in Jacqmin (1996), who discussed the model
in a ‘potential form’ as well as making note of its relation to the above ‘stress form’. The
merits of these two equivalent formulations were discussed in terms of specific applications.
Lowengrub & Truskinovsky (1997) presented a thorough derivation of the diffuse-interface

model based on entropy production and paid particular attention to the difference between
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compressible and quasi-incompressible fluids. The quasi-incompressible situation describes
the case where the fluid density is independent of the pressure. However, the bulk states
may have different densities and the flow in the interfacial region is in general non-solenoidal
(V-7 # 0), resulting in an expansion or contraction flow upon phase transformation. These
authors argued that within the context of quasi-incompressibility, the appropriate thermody-
namic description is in terms of a Gibbs free energy, in which the pressure is an independent
variable determined by the transport equations rather than a quantity determined thermo-

dynamically.

Applications

THERMOCAPILLARY FLOWS  Antanovskii (1995) used his nonisothermal binaiy fluid
model to compute one-dimensional thermocapillary flow in a gap. In this situation, twe fluid
phases, characterized by their different compositions, were separated by a planar diffuse
interface along which a temperature gradient was imposed. Calculetions for different values
of interfacial layer thickness and viscosity ratios were presented. Jasnow & Viials (1996)
investigated thermocapillary migration of droplets of one phase in the surrounding phase.
They focused on drops with radii on the order of ten times the correlation length. Their
calculations show the motion of the droplet through the temperature gradient as a function
of time and the dependence of its velocity on this temperature gradient. Also shown is a
sequence in which two droplets coalesce.

SPINODAL DECOMPOSITION Gurtin et al (1996) considered spinodal decomposition
occurring in an isothermal binary fluid. Their computations, which begin with an initial
random distribution of the composition, show the coarsening process explicitly. They note
that the main effect of the hydrodynamic interactions on this process is the flow-induced
coalescence of droplets. Their calculations specifically show the flow associated with these
coalescence phenomena. They compute the domain (structure) size, compare with classical
predictions, and find that for long times the growth is faster than the classical scaling law

for coarsening by purely diffusive mechanisms. Jasnow & Vidals (1996) consider a similar
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situation but include the effects of a nonuniform temperature field. Their results, displayed
in the time-sequence in ¥ig. 3, show the spinodal decomposition of a binary fluid in a
rectangular cell across which a vertical temperature gradient is imposed (the cell is hottest
at the bottom). Here, an initially random composition distribution (top frame) undergoes
coarsening and domain growth. At an intermediate time (middle frame) and a later time
(bottom frame), their calculations show nonuniform coarsening wherein the smaller (larger)
scales occur in the warmer (cooler) regions.

MIXING AND INTERFACIAL STRETCHING  Chella & Viiials (1996) compute the
mixing and interfacial stretching of an isothermal, incompressible binary fluid in a shear
flow with equal densities and viscosities in the two phases. An initially planar interface is
shown to distort under an imposed shear flow. The wrapping up of the two phases is shown
for different values of the capillary number (surface energy). The amount of interfacial
stretching is computed and compared with an analytical solution for that associated with a
passive scalar. An increase in the surface energy corresponds to a decrease in the amount
of stretching and in this way opposes the effect of the shear flow. Further calculaticns by
Chella and Viidals of flow in a driven cavity are shown in Fig. 4. A number of breakup and
coalescence events can be seen in this sequence.

DROPLET BREAKUP Jacqmin (1996) calculated the breakup of an inviscid fluid in
the context of a two-dimensional isothermal model. The initially elongated droplet relaxes,
oscillates and breaks apart into two separate droplets. In these calculations, the diffusion
coefficient (D in our notation) was made velocity dependent. In addition to plots showing
the actual droplet breakup process, the kinetic and surface energy evolutions are also given.
In the case where the flow is strongly damped by using a larger value of D, the energy of
the droplet decreases rapidly and breakup does not occur.

WAVE-BREAKING AND SLOSHING Jacqmin (1996) also applied the diffuse-interface
model to a large-deformation sloshing flow in a two-dimensional rectangular domain. Inter-
action with the solid wall of the container is modeled using a wall potential associated with

a 90° contact angle between the wall and the interface. The two-phase fluid in a uniform
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(vertical) gravitational field was suljected to an oscillating horizontal acceleration whose
amplitude increased linearly in time. The motion of th_ initially planar interface between
the two stably stratified phases is computed once the horizontal accelerations begin. It is
shown that the shape of interface becomes highly nonlinear and several breakup and coa-
lescence events can be seen to occur. It is noted that the prediction of coalescence events
may occur more quickly than is physically realistic since a high level of accuracy is needed
to resolve the draining layer between the two coalescing phases.

MOVING CONTACT LINES  Jacgmin (1996) investigated the fluid motion near a
moving contact line. These steady calculations show the existence of a dynamic contact
angle associated with the interface away from the immediate vicinity of the contact line.
Also observed is a streamline (similar to that observed in the experiments by Duss-n V. &
Davis (1974)) issuing from the contact line region into the displaced fluid.

NUCLEATION Lowengrub & Truskinovsky (1997) considered nucleation (and annihi-
lation) of an isothermal, spherically symmetric equilibrium droplet. In particular, they used
the diffuse-interface model to describe the situation where the droplet size was comparable
to the interface thickness. In the incompressible case, where the density was uniform ev-
erywhere, they performed an analysis of the spherically symmetric Cahn—Hilliard equation
with a free-energy density composed of piecewise parabolas to find new analytic solutions for
the compositions. In the compressible case they proceeded numerically and concluded from

their results that compressibility has little effect on the interfacial structure of the droplet.

4. RELATED TOPICS

Sharp-Interface Limit

As noted in Section 2, the diffuse-interface models may be applied away from the critical
point, where the interfacial thickness approaches that of a ‘sharp’ boundary. The use of
the diffuse-interface models in these regimes may be justified by demonstrating that they
approach asymptotically the free-boundary formulation. This is achieved by adopting what
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is commonly known as the ‘sharp-interface limit’.

There has been a significant effort in the context of phase-field models of solidification
to address the sharp-interface limit and to compare the model to well-known results of the
free-boundary problem (e.g. Caginalp 1989, Braun et al 1994).

One o the key features in the diffuse-interface models described here, which is not present
in the phase-field solidification models studied to date, is the (vector) momentum equation
which involves the distributed capillary stress=s. Consequently, much of the emphasis in
terms of the sharp-interface analyses of the diffuse-interface model has been to recover the
classical interfacial boundary conditions associated with the stress balance at the interface.
Here we describe the efforts in this area and outline a simple reduction of the momentum
balance to the interfacial stress jump using a pillbox argument.

Antanovskii (1995) derived from his diffuse-interface model of a binary fluid the special
cases cf the classical hydrostatic balance for a flat interface in equilibrium and the Young-
Laplace equation for a spherical interface in equilibrium. The latter case has also been
considered for a single-component model by Blinowsk: (1979). Nadiga and Zaleski (1996)
also confirmed numerically that their diffuse-interface model accurately recovered the clas-
sical results for a flat interface and for a liquid droplet in equilibrium. Jasnow and Vifals
derived from the capillary term in their momentum equation the appropriate sharp-interface
tangential and normal forces when the surface tension was a slowly varying function along the
interface. More detailed analytical approaches have been addressed by Starovoitov (1994),
Anderson & McFadden (1996) and Lowengrub & Truskinovsky (1997).

To illustrate these ideas, we apply a pillbox argument to the momentum balance (17b) to
show how the classical stress balance at a fluid-fluid interface can be derived from the diffuse-
interface model. We define a small parameter ¢ measuring the thickness of the interface by
Kg = K. We then consider the surface S; defined by the contour of density upon which the
interfacial region collapses in the limit ¢ — 0 and define a pillbox enclosing a portion of this
surface at a fixed point in time in such a way that the top of the pillbox is above the surface
at a height » = § and the bottom of the pillbox is below the surface at a height r = —4.
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Here, r is a local coordinate normal to the interface. The key limit in the pillbox argument
is that € € § « L where L is an O(1) length scale associated with the outer flow. In this
limit, the volume of the pillbox becomes negligible on the outer scales but the variations in
the density, which define the interfacial region, occur over a region fully contained within the
pillbox. Also in this limit, the unit normal vectors on the top and bottom of the pillbox are
7i and —% respectively while the unit normal on the side is given by 7a (note that -2 = 0).

We integrate equation (17b) to obtain
-/ (6(”‘7) +V (50— V- m)dV (22)
b4

where we have used (17a) and the fact that

Dv _ 8(ev) L
Poe = ot +V-(pv®7). (23)
Next, we note that
8(p) [
fv R /S (o)1 #sdS, (24)

where vr is the velocity of the surface Sy described above and S, denotes the surface of

the pillbox. This result follows by translating to a frame moving with the interface so that

B(p0) /0t = 8(p¥)/Bt — T - V(pB) = 8(p)/8t' — V - (p¥1 @ ¥) + pFV - ¥1. The terms
8(p7)/8t + piV - U are bounded and hence do not contribute as the pillbox volume goes to

zero. We use this and the divergence theorem to obtain from equation (22)
0= /s [63(5 = 57) - fos — s - m] 5. (25)
14

We further argue that the fluid velocity terms are bounded (so that they do not contribute
to the integral over the side surface of the pillbox) and that the nonclassical terms do not
contribute to the upper and lower surfaces of the pillbox (since € <« §) so that

0=/A[pé'(i‘—ﬁ',)--r‘z—-ﬁ-(—pI-l—r)]tdA—_/;derh-TdS, (26)

where A is the portion of S; within the pillbox. Now, local to the interfacial region we have

Vp ~ p,fi and V3p ~ p,, to leading order. Then - T ~ (% - T - ) so that
s e d —5 A A + o N N n
0= ./.4 [W(v —vp)-A—-n-(-pI+ T)]_dA - fb/-w(m T - ¥a)hdrd, PX)
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where C is the contour defined by the intersection of Sy and the pillbox surface and dl is the
increment of arclength along C. We next define the scalar

v= /_:(ﬁz-:r-m)dr, | (28)

which can be shown to be equal to the excess Kramer’s potential, that is, the surface energy
(Anderson & McFadden 1996). We then apply the surface divergence theorem (Weatherburn
1925) which allows us to write

fc'yﬁtdl = L[Vs’Y —v(Vs -i)n]dA, (29)

where Vg7 is the surface gradient of 4 and V-1, the surface divergence of 7, is the interfacial

curvature, K. This gives
- -4 A A + ~
0= /A {[pt'f(v —vp)-n—n- (—pI+'r)]_ - [Vs‘y —71Cn]}dA. (30)
Finally, noting that the area of integration is arbitrary yields
e od e d ~ ~ + ~
[pv(v—v;)m-—n- (—-pI+1')]_ = Vgv — 7K, (31)

which is the classical stress balance at a fluid-fluid interface (Delhaye 1974). Note that the
first term on the left-hand side represents a jump in the momentum across the interface and

1s zero when there is no mass flux across the interface.

Other Computational Methods

The diffuse-interface models share common features with a number of methods developed
from a more computational point of view. We outline several of these methods below and
highlight some of their applications.

The volume of fluid (VOF) method (Hirt & Nichols 1981, Hyman 1984, Tsai & Yue
1996) is a numerical approach to the free-boundary problem in which an auxiliary function
F, which distinguishes one fluid from another, is introduced in order to identify the shape
and evolution of the free boundary. This function satisfies DF/Dt = 0; that is, it is advected
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with the flow. Each computational cell has associated with it a value of F and those cells
which take on a value between two bulk values of F are assumed to contain part of the
interface. The normal to the interface in the cell is determined by the direction of the
largest local gradient and the position of the interface in the cell is arranged so that F is the
fractional volume of fluid in the cell. The VOF method, like the diffuse-interface approach,
allows a straightforward description of flows involving complicated boundary shapes and
topological changes. In contrast to the diffuse-interface aprroach, however, free surface
boundary conditions in the VOF method must still be applied at the free boundary.

Brackbill et al (1992) developed a ‘continuum surface force’ model wherein they iden-
tified a volume force which represents surface tension spread over a small but finite three-
dimensional interfacial domain. This volume force was related to a ‘color’ function which, for
example, can represent density for incompressible flows. The defining characteristics of this
volume force are that it gives the correct surface force in the limit of a sharp interface and
is nonzero only in the interfacial region. This approach allows a single-domain description
of the two-fluid system and does not require the direct application of boundary conditions,
which are built into the governing equations. A number of numerical results are presented
for both static and dynamic situations: (z) a static drop (rod), (i) a nonequilibrium rod
upon which capillary waves move along the surface, (i12) the Rayleigh-Taylor instability and
the associated interfacial deformation, (iv) flow induced by wall-adhesion whereby the fluid
conforms to an imposed equilibrium contact angle on the wall, and (v) jet-induced tank
mixing and liquid reorientation in microgravity environments.

Another related approach has been developed by Unverdi and Tryggvason (1992a, 1992b).
Their approach is a front-tracking technique which employs a numerically-diffuse description
of the interface. They construct an indicator function, based on the known position of the
(sharp) interface, which identifies fluid properties such as density and viscosity. This function
is then artificially spread out over a small region on the scale of the computational mesh size,
allowing the fluid properties to vary smoothly through this interfacial region. The surface

force (i.e. surface tension) is also distributed over this interfacial region so that a single-
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domain approach can be used to calculate the flow. This flow then determines how the
interface is advected. In Unverdi and Tryggvason (1992a), both two- and three-dimensional
multiple bubble motion and interaction are presented. In Unverdi and Tryggvason (1992b),
the Rayleigh-Taylor instability in two and three dimensions and also bubble-bubble interac-
tion in three dimensions are computed. Nobari et al (1996) have recently used this approach
to compute head-on collision of two viscous liquid droplets with surface tension. Here, rup-
ture is modeled by artificially removing the thin film between the two drops at a prescribed
time. They found that if no rupture takes place, the drops always rebound, but that when
rupture occurs the drops may later split. This method has been extended by Juric and Tryg-
gvason (1995, 1996) to describe flows in the presence of phase change. Here, they applied
the model to vapor bubble dynamics and film boiling.

Another highly successful computational scheme that has been applied to interfacial
motion is the level set method, see Osher & Sethian (1988) and Sethian (1996). With this
method, the interface is represented as a level set of a smooth auxiliary function which is
computationally analogous to the order parameter used in diffuse-interface descriptions. An
advantage of the level set method is that the interface remains sharp in this formulation,
which eliminates the need for added numerical resolution in the direction normal to the
interface. Within the context of fluid mechanics and two-fluid flows, surface tension, for
example, is represented in the momentum equations as a distributed force through the use
of a smoothed delta-function (Sussman et al 1994, Chang et al 1996). The momentum
equations are then used to compute the flow over the whole domain and the level set function
is advected with the flow. After a normalization procedure, the level set function determines
the new position of the interface. Mulder et al (1992) applied the level set approach (without
surface tension) to study the Rayeigh-Taylor and Kelvin-Helmholtz instabilities within the
context of compressible gas dynamics. Sussman et al (1994) used this approach to model
incompressible two-dimensional rising bubbles and falling drops, which show large distortions
and topological changes. They also show two impacting droplets as well as a single droplet
impacting a surface. Chang et al (1996) also applied a level set approach for incompressible

-22-



DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS April 1995

fluids to several topologically complex flows. They presented computations of two merging
fluid bubbles of equal density and also two merging fluid bubbles of different density. Further,
they investigated the Rayleigh-Taylor instability of an initially motionless, vertical column

of fluid and show calculations of the subsequent vortex sheet roll-up phenomena.

Miscible Fluids

The ideas that are involved in the d‘ffuse-interface models described in the preceding sec-
tions are similar in many ways to those for miscible fluids. In particular, fluid stresses
(i.e. Korteweg stresses) that arise due to concentration and density gradients at the interface
between two miscible fluids lead to the notion of surface tension between miscible fluids.
Joseph (1990) has investigated these ideas both experimentally and theoretically. He per-
formed a number of experiments and highlighted other experimental work in which miscible
liquid droplets rising or falling in another liquid exhibit capillary-type effects; that is, their
shapes are consistent with the presence of surface tension on the interface. In the theoretical
development, the equations governing the motion of the fluid are similar to those presented
in the above section on binary fluids. They are the continuity equation, the Navier—Stokes
equations modified to account for the gradient stresses, the heat (energy) equation, and a
standard diffusion equation, rather than the modified Cahn-Hilliard equation (21), that de-
scribes the evolution of the composition. Besides the difference in the equations governing
the composition, another key differer.ce between the description given by T-seph (1990) and
that for a binary fluid descrit-.a in section 3 is that his model described a generalized (or
quasi) incompressible fluid. Here it is assumed that the density is a function of compo-
sition and temperature but is independent of the pressure. Although the density then is
unchanged by pressure variations, the asiociated flow may still be nonsolenoidal (V - ¥ # 0)
due to composition or temperature variations. This notion has been carefully adopted into
the diffuse-interface model for a binary fluid by Lowengrub & Truskinovsky (1997).

The theoretical model described by Joseph (1990) has been analyzed in more detail by
Galdi et al (1991). These authors rework the equations and identify a new solenoidal velocity
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which is a linear combination of the original velocity field and the concentration gradient.
Associated with this new velocity is a pressure field that is a linear combination of the
original pressure and the divergence of the original velocity. They address the linear and
energy stability of a quiescent, vertically (unstably) stratified incompressible fluid in which
Korteweg stresses arise due to composition gradients. This is the analog of the classical
Bénard problem with the exception that the authors do not immediately invoke the Boussi-
nesq approximation. They find that the stability results depend strongly on the value of the
coefficient in the Korteweg stress (and in particular on its sign). When its sign is chosen
consistent with that in the capillary stress term described in Section 2, and when its effect
is strong enough, an unconditionally stable base state is predicted.

An notable idea described in the paper by Joseph (1990) is that of a dynamic (or nonequi-
librium) surface tension between two miscible fluids. That is, although for two miscible fluids
it is not clear that one can define an equilibrium surface tension, based on the idea of stresses
associated with gradients in density or composition, transient or dynamic surface tension be-
tween two mixing phases can be studied. Joseph et al (1996) consider this situation in detail.
In this paper, they carry out an analysis using the model of Joseph (1990) of transient or
dynamic interfacial tension during the smoothing of an initial discontinuity of composition
across plane and spherical surfaces separating two miscible liquids. It is found that the
dynamic interfacial tension decays in time like t~'/2 and has contributions from Korteweg
stresses and from the expansion velocity (i.e. the nonsolenoidal part) which also involves
the rate of change of viscosity with composition. For a plane mixing front, diffusion has
a similarity solution and they show that there is no associated pressure jump due to the
Korteweg terms (i.e. surface tension does not lead to a jump in pressure when the curvature
of the interface is zero). The only pressure difference across the mixing front is due to the
hydrostatic pressure difference (i.e. due to gravity) across the layer since its thickness is
growing with time. For an initially spherical droplet placed in another (miscible) fluid they
identify a pressure jump associated with two effects: the first is due to the Korteweg stress

and the second is due to the expansion velocity and is proportional to the rate of change of
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viscosity with composition. The latter term can take on either sign, depending on how the

viscosity depends on the composition.

5. SUMMARY

We have reviewed the development and application of diffuse-interface models for both single-
component and binary fluids. These models have foundations in statistical mechanics, ki-
netic theory, mechanical theories, and nonequilibrium thermodynamics. They provide an
alternative approach to the classical hydrodynamic free-boundary problem and have been
used successfully in many applications. They should continue to play an important role, in
concert with other theoretical and experimental efforts, in the understanding of hydrody-
namic phenomena associated with critical fluids and other flows involving complex interface

morphologies and topological changes.
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Figure 1: Moving contact line: This figure shows the constant density contours
in the inner region. The frame of reference is fixed on the contact line region
so that the bottom plate moves from left to right at an imposed velocity. In
this case the imposed static contact angle at the wall is approximately 54°
while the dynamic contact angle (away from the immediate vicinity of the
contact line) is approximately 125°. The parameter values consistent with the
notation given in Seppecher (1996) are R = 20, u,, = 2, K =10, g = -0.3,
and Ca = 40 x 10-3. (This figure was provided by P. Seppecher).
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Figure 2: Moving contact line: This figure shows the streamlines in the inner
region associated with the density contours shown in Fig. 1. The frame of
reference is fixed on the contact line region so that the bottomn plate moves from
left to right at an imposed velocity. (This figure was provided by P. Seppecher).
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Figure 3: Spinodal decomposition: This time sequence (top to bottom) shows
spinodal decomposition of a binary fluid in a rectangular cell across which is
imposed a vertical temperature gradient (the cell is hottest at the bottom).
The composition is indicated in greyscale. These computations show the sys-
tem evolving from an initially random composition dis‘ribution in the top
frame, to one in the bottom frame where the domain structure size varies with
the temperature. (This figure was provided by D. Jasnow and J. Viiials).
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Figure 4: Flow in a driven cavity: This time sequence (across the top, left
to right and across the bottom, left to right) shows the order parameter (in
greyscale) representing the binary fluid composition. The flow is set up by
an imposed velocity (left to right) on the bottom surface of the cavity. The
densities and viscosities of both phases are equal. (This figure was provided
by R. Chella and J. Viials).
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